Multi-objective linear plus linear fractional programming problem based on Taylor series approximation

نویسندگان

  • Surapati Pramanik
  • Partha Pratim Dey
  • Bibhas C. Giri
چکیده

This paper deals with fuzzy goal programming approach to multi-objective linear plus linear fractional programming problem based on Taylor series approximation. In the model formulation of the problem, we first construct the membership functions by determining individual optimal solutions of the objective functions subject to the system constraints. The membership functions are then transformed into equivalent linear membership functions by 1 order Taylor series approximation. Then fuzzy goal programming models are formulated in order to solve the problem by minimizing negative deviational variables. Euclidean distance function is then used to obtain compromise optimal solution. To demonstrate the efficiency and feasibility of the proposed approach, two numerical examples are solved and compared with existing methods in the literature. General Terms Multi-objective linear plus linear fractional programming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A TAYLOR SERIES APPROACH FOR SOLVING LINEAR FRACTIONAL DECENTRALIZED BI-LEVEL MULTI-OBJECTIVE DECISION-MAKING UNDER FUZZINESS

This paper presents a Taylor series approach for solving linear fractional de-centralized bi-level multi-objective decision-making (LFDBL-MODM) problems with asingle decision maker at the upper level and multiple decision makers at the lower level.In the proposed approach, the membership functions associated with each objective(s) ofthe level(s) of LFDBL-MODM are transformed by using a Taylor s...

متن کامل

Integrating Goal Programming, Taylor Series, Kuhn-Tucker Conditions, and Penalty Function Approaches to Solve Linear Fractional Bi-level Programming Problems

In this paper, we integrate goal programming (GP), Taylor Series, Kuhn-Tucker conditions and Penalty Function approaches to solve linear fractional bi-level programming (LFBLP)problems. As we know, the Taylor Series is having the property of transforming fractional functions to a polynomial. In the present article by Taylor Series we obtain polynomial objective functions which are equivalent...

متن کامل

Presentation and Solving Non-Linear Quad-Level Programming Problem Utilizing a Heuristic Approach Based on Taylor Theorem

The multi-level programming problems are attractive for many researchers because of their application in several areas such as economic, traffic, finance, management, transportation, information technology, engineering and so on. It has been proven that even the general bi-level programming problem is an NP-hard problem, so the multi-level problems are practical and complicated problems therefo...

متن کامل

A Parametric Approach for Solving Multi-Objective Linear Fractional Programming Phase

In this paper a multi - objective linear fractional programming problem with the fuzzy variables and vector of fuzzy resources is studied and an algorithm based on a parametric approach is proposed. The proposed solving procedure is based on the parametric approach to find the solution, which provides the decision maker with more complete information in line with reality. The simplicity of the ...

متن کامل

Linear plus fractional multiobjective programming problem with homogeneous constraints using fuzzy approach

  We develop an algorithm for the solution of multiobjective linear plus fractional programming problem (MOL+FPP) when some of the constraints are homogeneous in nature. Using homogeneous constraints, first we construct a transformation matrix T which transforms the given problem into another MOL+FPP with fewer constraints. Then, a relationship between these two problems, ensuring that the solu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011